This data package was submitted to a staging environment for testing purposes only. Use of these data for anything other than testing is strongly discouraged.

This data package is not the most recent revision of a series.  (View Newest Revision)

Data Package Summary    View Full Metadata

  • Phospholipid Fatty Acid Profiles of Bacteria and Fungi in Poor Fen Peat Exposed to Experimentally Increased N Deposition, 2015
  • Wieder, R Kelman; Villanova University
    Vitt, Dale H; Southern Illinois University
    Vile, Melanie A; Villanova University
    Graham, Jeremy A; Southern Illinois University
    Hartsock, Jeremy A; Southern Illinois University
    Popma, Jacqueline M.A.; University of Michigan
    Fillingim, Hope; Villanova University
    House, Melissa; Southern Illinois University
    Quinn, James C; Villanova University
    Scott, Kimberli D; Villanova University
    Petix, Meaghan; Southern Illinois University
    McMillen, Kelly J; Villanova University
  • 2020-02-27
  • Wieder, R.K., D.H. Vitt, M.A. Vile, J.A. Graham, J.A. Hartsock, J.M. Popma, H. Fillingim, M. House, J.C. Quinn, K.D. Scott, M. Petix, and K.J. McMillen. 2020. Phospholipid Fatty Acid Profiles of Bacteria and Fungi in Poor Fen Peat Exposed to Experimentally Increased N Deposition, 2015 ver 1. Environmental Data Initiative. https://doi.org/DOI_PLACE_HOLDER (Accessed 2024-03-28).
  • Development of the oil sands has led to increasing atmospheric N deposition, with values as high as 17 kg N ha-1 yr-1; regional background levels <2 kg N ha-1 yr-1. To examine responses to N deposition, over five years, we experimentally applied N (as NH4NO3) to a poor fen near Mariana Lake, Alberta, at rates of 0, 5, 10, 15, 20, and 25 kg N ha-1 yr-1, plus controls (no water or N addition). In July of 2015 we measured PLFA markers in two depths in each plot. Fungal abundance increased at N addition levels above 16.6 kg N ha-1 yr-1 and total bacterial abundance also increased at N addition levels above 17.1 kg N ha-1 yr-1, such that the fungal:bacterial ratio was not significantly affected by N addition. Total microbial, gram-negative bacterial, and actinomycete abundance also showed an apparent threshold responses to N addition at 16-17 kg N ha-1 yr-1 addition levels.It may be that more sensitive/targeted techniques, such as high-throughput pyrosequencing, 16s RNA clone library analysis and rRNA-targeted fluorescence in situ hybridization (FISH) or whole genome shotgun sequencing may be required to reveal detailed fen microbial community responses to N loading.

  • N: 55.897      S: 55.897      E: -112.094      W: -112.094
  • This data package is released to the "public domain" under Creative Commons CC0 1.0 "No Rights Reserved" (see: https://creativecommons.org/publicdomain/zero/1.0/). It is considered professional etiquette to provide attribution of the original work if this data package is shared in whole or by individual components. A generic citation is provided for this data package on the website https://portal.edirepository.org (herein "website") in the summary metadata page. Communication (and collaboration) with the creators of this data package is recommended to prevent duplicate research or publication. This data package (and its components) is made available "as is" and with no warranty of accuracy or fitness for use. The creators of this data package and the website shall not be liable for any damages resulting from misinterpretation or misuse of the data package or its components. Periodic updates of this data package may be available from the website. Thank you.
  • DOI PLACE HOLDER
  • Analyze this data package using:           

EDI is proud to be affiliated with the following organizations: DataCite logo DataONE logo ESIP logo re3data logo